Quote for Today: Antony Sher

feather-967367_640

As we’re leaving the King’s Arms Hotel after Sunday lunch, I watch a beautiful white dove walking down the wet road. A car approaches and the bird accidentally turns into the wheel rather than away from it. A gentle crunch. The car passes. A shape like a discarded napkin left in the road. Still perfectly white, no red stains, but bearing no relation anymore to the shape of a bird. A trail of white feathers flutter down the road after the car. The suddenness is very upsetting. That gentle crunch.

Antony Sher, Year of the King: An Actor’s Diary and Sketchbook

Public Domain Image via Pixabay

Quote for Today: Mary Renault

800px-Sound_suppression_water_system_test_at_KSC_Launch_Pad_39A

You mustn’t get so upset about what you feel, Spud. No one’s a hundred per cent consistent all the time. We might like to be. We can plan our lives along certain lines. But you know, there’s no future in screwing down all the pressure valves and smashing in the gauge. You can do it for a bit and then something goes.

Mary Renault, The Charioteer

Public Domain Photo via NASA

Prussian Blue and Early Photography: Following Synchronicity From Diesbach to Anna Atkins

Scientific discovery and artistic innovation often occur together in unpredictable ways. How is this relationship shaped by accident and synchronicity?

During the early 1700s, the color maker Diesbach was attempting to produce a red pigment from iron sulfate and potash in his laboratory in Berlin. He decided to be frugal and use some contaminated potash which his friend, the alchemist, theologian, and physician Johann Konrad Dippel, widely purported to be the model for Dr. Frankenstein, was about to throw out. As a result, he first obtained a very pale and unsatisfactory red. He decided to concentrate it, but it turned purple instead of a deeper red. At this point he concentrated it one last time and it became deep blue. Diesbach had accidentally created the first synthetic blue paint.

Prussian blue thinned with turpentine

Prussian blue thinned with turpentine

At that time the best and most reliable blue pigments came from ground lapis lazuli, a semi-precious stone, and they were extremely expensive. This alternative, easy to make, inexpensive, intense and non-toxic, would become incredibly popular and was known as Prussian or Berlin blue. It would later be used to color the uniforms of Prussian soldiers. In an ironic twist, painters also sometimes refer to it as Parisian blue, since the first painter to make it famous, although not the first to use it, was Antoine Watteau, who passed it on to his students. It has been used by artists all over the world, including Asian painters such as Katsushika Hokusai, who imported it from Europe. The color appeared in the crayon box in 1949 and has been known as Midnight Blue since 1958.

Great Wave off Kanagawa by Katsushika Hokusai

Great Wave off Kanagawa by Katsushika Hokusai

Prussian blue is made from a powder of tiny crystals. These crystals are not water soluble and differences in their size result in variations in shade. The color owes its intensity to the transfer of electrons between iron compounds. Unfortunately for us, Prussian blue cannot be accurately reproduced on a computer display.

In 1842, the scientist and astronomer Sir John Herschel, seeking a means to reproduce notes and diagrams, would use a solution of Prussian blue on treated paper. This was called a cyanotype, although we are more familiar with the term blueprint. He shared his invention with friends, including the botanist Anna Atkins. One of his first experiments was a rather eerie copy of an engraving of a lady playing the harp, seen below.

Lady with a Harp, Sir John Herschel, 1842

Lady with a Harp,
Sir John Herschel, 1842

Anna, born in 1799, was the daughter of another famous scientist, John George Children, a mineralogist, zoologist and chemist. Her mother, Hester Anna, died from complications after Anna was born. As Children’s only child, she was very well educated and grew into a an accomplished scientist herself. Her father used her engravings to illustrate his translation of Lamarck’s Genera of Shells, published in 1823. After her marriage to John Pelly Atkins in 1825, she devoted herself to collecting plant specimens.

When Herschel exhibited the cyanotype as a way to copy manmade items, Atkins was intrigued and saw potential to render the images of natural subjects. She began making contact printed images of algae by placing them on cyanotype paper and exposing them to light, creating the photogram or camera-less photo.

445px-Anna_Atkins_algae_cyanotype

Dictyota dichotoma,
Photographs of British Algae: Cyanotype Impressions (1843)
Anna Atkins

“The difficulty of making accurate drawings of objects as minute as many of the Algae and Confera, has induced me to avail myself of Sir John Herschel’s beautiful process of Cyanotype, to obtain impressions of the plants themselves.”

                                         –Anna Atkins

448px-Anna_Atkins_Cystoseira_granulata

Cystoseira granulata,
Photographs of British Algae: Cyanotype Impressions (1843)
Anna Atkins

In 1843 she published Photographs of British Algae: Cyanotype Impressions, the first book ever published containing photographs. She published a number of such books as well as non-photographic literary works, including her father’s memoirs, before she died at the age of seventy-two. 

Anna_Atkins_(1799-1871)_Ceylon,1850_SFMOMA

Ceylon Fern
Anna Atkins
© SFMOMA with CCLicense

Like to read about women scientists and pioneers? You might enjoy Synkroniciti’s post on Maria Sibylla Merian, which you can read here.

Anna_Atkins_grass_cyanotype

Festuca grass,
British and Foreign Flowering Plants and Ferns,1854
Anna Atkins

Quote for Today: George Saunders

© TCorp with CCLicense

© TCorp with CCLicense

Night was falling. Birds were singing. Birds were, it occurred to me to say, enacting a frantic celebration of day’s end. They were manifesting as the earth’s bright-colored nerve endings, the sun’s descent urging them into activity, filling them individually with life nectar, the life nectar then being passed into the world, out of each beak, in the form of that bird’s distinctive song, which was, in turn, an accident of beak shape, throat shape, breast configuration, brain chemistry: some birds blessed in voice, others cursed; some squeaking, others rapturous.

― George Saunders, Escape from Spiderhead